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Extensions of the "Distributed Approximating Functional" ~ A F )  approach to 
approximating functions and their derivatives are given. The method, although inher- 
ently approximate, can be made arbitrarily accurate, numerically stable, and computa- 
tionally efficient by appropriate choice of parameters. It also provides approximate 
representations of quantum operators which are analytic and which can be made arbitra- 
rily accurate. Differences between the DAFs and more standard basis set approaches are 
discussed in order to clarify the properties of the DAFs. Some illustrative examples are 
given. 

1. I n t r o d u c t i o n  

Recen t ly ,  D i s t r i b u t e d  A p p r o x i m a t i n g  Func t i ona l s  ( D A F s )  [1-10] h a v e  been  
i n t r o d u c e d  as a m e a n s  o f  f i t t ing or  a p p r o x i m a t i n g  a c o n t i n u o u s  func t ion  f r o m  
va lues  k n o w n  on ly  on  a d iscre te  set  o f  po in t s ,  a n d  also wi th  o b t a i n i n g  a p p r o x i m a t e  
l inear  t r a n s f o r m a t i o n s  o f  the ( con t inuous )  func t ion ,  p a r t i c u l a r l y  its de r iva t ives  to  
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various orders. An especially useful realization of the DAF approach is that for 
which there are no "special points" in the approximation, i.e., the order of accuracy 
of the fit to the function is the same on or between the grid points. Fitting and 
approximating functions and their linear transformations are old and important 
topics in numerical analysis which have been approached from many points of 
view. The history of the subject is far too long to treat here and we refer the reader 
to some the relevant literature [11-20]. However, it may be helpful to point out a 
few distinctions between DAFs and some of the more recent computational tech- 
niques employed in the literature. For example, a particularly popular approach 
among quantum scattering theorists is the "Discrete Variable Representation" 
(DVR) approach first developed by Lill et al. [16]. This is essentially a basis set 
method founded upon Gaussian quadrature. The wavefunction in the DVR 
approach is related to the wavefunction in the relevant orthogonal basis by a uni- 
tary transformation. The DVR satisfies what is essentially an interpolation for- 
mula. The DAF approximation, by contrast, is not exact on the grid points, and the 
DAF approximation to the wavefunction is not a projection onto a subspace. 
Another group of popular approaches are those based on collocation techniques 
[19]. In these, a function satisfying a differential equation is expanded in a basis set. 
Equations for the expansion coefficients are obtained by projecting the differential 
operator, applied to the truncated basis expansion of the function, with Dirac delta 
functions centered on selected discrete points (the number of which equals the num- 
ber of basis functions employed). This yields a system of linear algebraic equations 
for the expansion coefficients, which must be solved. DAFs can be employed with- 
out necessitating the solution of systems of algebraic equations. A third group of 
approaches is based on dividing the ranges of the independent variables (in a judi- 
cious manner) and introducing polynomials on the various intervals [17]. By con- 
trast, the DAF approach associates a distinct basis set with every point on the axis. 
Similarly, differences exist between DAFs and a host of other numerical 
approaches (e.g., wavelets, splines, finite differences, finite boundaries, etc.). 

Up to the present time, except for studies that examined DAFs associated with 
non-Cartesian coordinate systems [6], we have concentrated on DAFs constructed 
as finite sums of Hermite functions (Hermite polynomials times their generating 
function [1,2]). In addition, the DAFs have been derived either as solutions of linear 
algebraic equations determining approximations to a function [1] (for discrete 
DAFs) in terms of known values on a grid, or (for continuous DAFs) by taking the 
continuum limit of the discrete DAF [2]. Equivalently, for the continuous DAF 
case, one can truncate the completeness expansions of the Dirac 6-function [3]. 

In general, however, it is desirable to obtain more powerful approaches to defin- 
ing DAFs. In particular, in the case of standard basis set approximations to func- 
tions, it is well known that one can derive them by variationally minimizing the 
absolute square deviation between the exact and basis set expansion functions. This 
paper derives a more general form of DAF approximation by minimizing a varia- 
tional functional. The result shows that the linear algebraic equations solved earlier 
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for Hermite-function based DAFs are, in fact, variationally accurate. Another  con- 
sequence of  this is that  standard basis set expansions can be viewed as a special case 
of  DAFs.  However, the DAFs  are more general, and we explore some of  their more 
useful possibilities. In particular, we obtain a procedure for constructing DAFs  
based on polynomials orthogonal under summation over a discrete grid. Having 
obtained a generalized family of  DAFs, we then proceed to explore a number  of  
their salient properties. We also explore in more detail the property of  approximat- 
ing functions in a manner  which avoids special grid points. This property of  the 
DAFs  is referred to as the "well-tempered" property. 

This paper is organized as follows: the next section presents the general varia- 
tional principle satisfied by the DAF representation of a function. Section 3 
explores the important  special case of an equally spaced grid, and section 4 contains 
the a formal analysis of the "well tempered" approximation property of  those 
DAFs  for which the grid points are not special [10]. Essentially, this analysis shows 
that such D A F  approximations to a function yield equivalent order accuracy for 
the function both on the grid and also between the grid points. This is a highly desir- 
able property in that it reflects a faithful reproduction of  the function and its deriva- 
tives. By way on contrast, interpolation formulae give exact results for the function 
on the grid points, but often at the expense of  giving poor results between grid 
points. Also, standard basis set expansions tend to oscillate about the function 
being expanded. It is easy to see that in both of these cases the representation of  the 
derivatives (and other linear transforms) of the function will not be nearly as accu- 
rate as the representation of the function itself. Section 5 explores more general rea- 
lizations of DAFs,  and section 6 discusses the use of  DAFs  to obtain derivatives 
and linear transformations of functions. The demonstrat ion of the "well-tem- 
pered" property in section 2 for the D AF representation of  the function is shown to 
hold as well for DAF representations of its derivatives. In section 7, we demon- 
strate the fact that DAFs can be used to construct a sequence of  representations 
that  converge asymptotically to the function. In section 8, we obtain a closed form 
expression for the DAFs created from orthogonal polynomials by two distinct 
methods.  Finally, we summarize our findings in section 9. 

2. The  D A F  var ia t ional  principle 

Consider a function g(x) defined for - c ~  < x < co. (Generalizations to func- 
tions defined on line segments and functions in higher dimensions can be carried 
out readily.) We assume that the values of the function on a discrete set of  grid 
points are known. Our objective is to construct an approximation to the function of 
the form 

o o  

gapp(X)= Z I(x, xk)g(xk), (1) 
k=-oo 
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where g(xk) is the known value of the function on the kth grid point and in general, 
gapp is only approximately equal to g(x), even on the grid points. The quantity 
I(x, Xk) is an example of an "Approximate Identity Kernel" (AIK). Eq. (1) is a 
mapping of the vector, whose component elements are the known values on the 
grid, onto a point x. For each point x, there is one such mapping, specified by a 
"row" of the AIK. Note that x can assume any value in the interval ( -oo,  e~), so 
that eq. (1) generates a representation of the continuous function from a discrete set 
of values. In the most general case, we can construct each row of the AIK I(x, Xk) in 
any manner we wish, provided that the approximation of eq. (1) is satisfied to 
sufficient accuracy for whatever particular application is under consideration. 
That is, a different functional dependence in I(x, xk) on Xk can be chosen for each 
value ofx. 

We wish to construct an approximation gx(X') to g(x') which, in the neighbor- 
hood of x, is a sufficiently good approximation for the purpose at hand. (What is 
meant by "sufficiently good" will depend on the application.) We proceed by 
expressing gx(X') in a conventional basis set expansion using the functions {(j} cen- 
tered on the point x (we therefore write the "point-of-origin", x, as a subscript 
index rather than as a variable). That is, 

gx(X~) = Z aj(x)g4(xJ - x ) .  (2) 
] 

In general, we do not require that the set of functions {~j} be complete; if the set is 
not complete, gx(X ~) will provide only an approximation to gOd). 

Next define A({aj}; x) to be the weighted absolute square deviation of gx(xk) 
from g(xk); i.e., 

x) g(xk) x) = A({aj};x) = ~ w ( x k -  - Zaj (x )~ j (xk -  , (3) 
k j 

where w(xk - x) is a non-negative weight function centered on the point x. It is con- 
venient to include a volume element in the weight so that 

Z ~ / dxk (4) 
k 

in the limit that the grid spacing becomes infinitesimal. For a grid of equally spaced 
points, the volume element is constant, and for unequally spaced grids it is a func- 
tion of x. The limit is thus well defined irrespective of whether the grids used to con- 
struct the limiting sequence have equal spacing. 

To obtain the values of the expansion coefficients, aj(x), we invoke the varia- 
tional principle that A({aj}; x) be a minimum with respect to variation of the aj coef- 
ficients for each value of x. Minimization of A({aj};x) by variation of the 
expansion coefficients leads to the set of linear equations 
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E W(Xk -- X)~(Xk -- x)g(Xk) = E Cjnan(X), (5) 
k n 

where Cjn is thejn element of the "overlap matrix" C defined by 

Cjn(x) = E W(Xk -- X)~;(Xk -- X)~n(Xk -- X) . (6) 
k 

Eq. (5) is a variational generalization of the algebraic equations developed in the 
first paper introducing the discretized DAFs [1]. The formal solution ofeq. (5) leads 
to a set of x-dependent expansion coefficients. Substituting these coefficients into 
eq. (2) yields 

gx(X ~) = E W ( X k - -  x) E CT~l(x)¢*n(Xk-- x)ej(x~-- x)g(xk) ,  (7) 
k j,n 

where C -1 is the inverse of the "overlap matrix" defined in eq. (6). Eq. (7) is valid 
provided that C-1 exists, and when compared with eq. (2), yields 

aj(x) = E W(Xk -- X)~(Xk -- x)Cj-ni(x)g(xk) . (8) 
k~n 

Equivalently, comparison with eq. (1) shows that for a basis set expansion the 
AIK is given by 

Ix(g~,Xk) = E W(Xk -- X)~n(Xk -- x)fffnl(x)~j(x t - x) , (9) 
j,n 

where the parametric dependence on x, the"origin" of the basis functions, has been 
explicitly noted. 

The functional A({aj}; x) provides a least squares measure of the error in repre- 
senting g(x) for a given set of aj coefficients. For any x, use of the aj(x) given by 
eq. (8) minimizes A(x). Our analysis thus far has yielded a basis set expansion of the 
function g with x as the origin. If the basis functions were taken to be independent 
of x, i.e., relative to a single origin, then the standard basis set expansion results. By 
contrast, the variational principle yields the DAF by supplying a separate basis set 
for each x. 

For weight function W(Xk -- x), peaked about x, the representation supplied by 
eq. (9) will be most accurate in a region about x. Therefore, we define the distributed 
approximating functional representation, ~, of the function g to be 

~(x) =-- gx(X) = E I(X, Xk)g(Xk), (10) 
k 

where 

I(x,  xk) =- E W(Xk x)~j(O) -1 * - c j ;  - x )  

j,n 

= E bn(X)W(Xk- X)~*n(Xk- X). (11) 
n 
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Here 

bn(x) = ~ ~j(0)Cjnl  (x) • (12) 
J 

It should be noted that eq. (7) provides an approximation for the original function 
that is valid only locally in a neighborhood around the origin (the point x in our de- 
velopment). The size of the neighborhood is determined by the width of the weight 
function. Thus, although eq. (7) yields an approximate value for any x' in the neigh- 
borhood of x, only the single value when x' = x is used in the DAF approximation. 
This completes the construction of the kernel of the DAF approximate identity 
based on the variational principle. Although the arguments have been developed 
assuming a discrete grid, they immediately generalize to the case of a continuous 
grid (i.e., the continuous DAF) by replacing sums by integrals where appropriate. 
Also, although for clarity of the presentation we have restricted our attention to the 
one dimensional domain - o e  < x < oe, it is straightforward to generalize the 
results to other domains or to higher dimensions. Eq. (10) then provides an approxi- 
mation that is valid everywhere on the line, since the weight function is always cen- 
tered at the point of approximation. 

In the foregoing, the DAF approximation to the function has been motivated 
qualitatively by a desire to give a "best fit" to a function g, where all points are 
treated equivalently. Computational difficulty or efficiency were not considera- 
tions. At first glance it would seem that constructing the DAF is computationally 
extremely intensive, since from eq. (11) the overlap matrix C must be calculated 
and inverted for each point x at which the approximate function is evaluated. In 
fact, a suitable (and straightforward) choice of parameters eliminates the need to 
deal with the overlap matrix. We now discuss some important particular realiza- 
tions of the DAFs and their properties. 

3. The special case of  an  equally spaced grid 

The DAF representation, with appropriate parameters, provides a "best fit" 
mapping (in the sense determined by the variational principle at each x point) from 
a function known only on a discrete set of points to one known to the same level of 
accuracy at any point on a continuous interval. In the important special case that 
the grid points have equal spacing, A, and the weight function and basis set are 
functions o fx  - Xk, with the form of the weight and basis functions being the same 
for each x, the structure of the DAF simplifies significantly and the DAF approxi- 
mation can be applied in an extremely efficient manner. Specifically, in this case, 
the overlap matrix of eq. (6) and the bn-coefficients of eq. (1 2) are functions only of 
77, the value of x modulo the grid (i.e., r/is the smallest non-negative value of 
x - nA, for integer n). That is, 



D.K. Hoffman et aL / Distributed approximatingfunctionals 123 

Cyn(x) = Cj~(r/) (13) 

and 

bn(x) = bn(r/). (14) 

Thus the AIK is invariant to translations of the x, Xk pair over an integral number  
of  grid spacings. This implies that 

I(x,  xk) = f ( x  - xk) , (15) 

which in turn means that the AIK is a Toeplitz operator. The Toeplitz condition 
proves very convenient numerically since eq. (10) becomes a convolution. As is well 
known, the frequency space representation of an operator that is Toeplitz in the 
coordinate representation will be diagonal. Thus, the D A F  is simply a multiplica- 
tire factor in frequency space. In addition, it turns out that the frequency space 
DAF,  though analytic, is effectively one over a range of  frequency and zero else- 
where. Consequently, such DAFs can be used as window functions and frequency 
filters and allow "fast t ransform" [8,22] methods for computing the action of the 
D A F  on a function. In addition, for a proper choice of parameters the need to cal- 
culate and invert C(rl) can be eliminated, providing even more numerical effi- 
ciency. 

To illustrate these considerations, consider the case of  an equally spaced grid, a 
Oaussian weight function, and a basis set in eq. (2) consisting of  polynomials of 
degree less than or equal to M. (Because the basis functions corresponding to a 
Gaussian weight are Hermite polynomials we refer to this case as the Hermite D A F  
[1-3].) Specifically, 

w(x) = exp -I~-21 , (16) 

where c~ is a parameter  that fixes the Gaussian width. To motivate our discussion 
of  the next section, we remark that such a D A F  can be chosen to deliver an approxi- 
mat ion with the same level of  accuracy that the function can be represented by using 
a polynomial of  degree M + 1, under the Gaussian weight. 

Because Hermite polynomials are orthogonal under integration for this weight 
function, it is convenient to define 

in eq. (2), in which case 

Cjn(X) = Cjn(rl)= y ~  e-(X-Xk)2/2°aHj H n \  vT~o " ; 2V/~ 2 • 
k 
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This coefficient, Cj, (77), can be computed, using the Eule r -MacLaur in  approxima- 
tion [1 1], as the overlap integral 

x - x '  (19) 

(20) 

where for the Hermite polynomials 

Aj = v f2J j ! .  (21) 

For  suitable values of  j ,  n and or/A, for which the Euler -MacLaur in  approximation 
is sufficiently accurate, the discrete sum in eq. (18) is essentially diagonal and the 
bn (x) coefficients will be constants independent of x. Fig. 1 shows the behavior of  
an even and an odd b-coefficient (b0 and bl respectively) as a function ofx. The plot 
illustrates that the b, (x), n = 0, 1 are periodic and hence b, (x) = b, (77) (i.e., the plot 
between x = 0 and x = 1 can be considered the graph ofb ,  (r/). A particularly useful 
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Fig. 1. Demonstration of periodicity and convergence of bn (x) (plotted in units of a, see eq. (22)) for 
the distributed approximating functional based on Hermite polynomials. Fig. l(a) shows bo(x) for 
several values of a /A,  while (b) shows bl (x) for the same values ofcr/A. Fig. 1 (c) is a "blow-up" of(a) 
demonstrating that as cr/A increases b0 becomes essentially constant and converges to the value 
(270 -1/2 ~ 0.398. Similarly, Fig. l(d) is a blow-up of Fig. l(b) and shows bl becoming independent of 
x and converging to 0. All plots are for two periods of x, explicitly demonstrating the periodicity of the 
bn (x). For this case a value o f M  = 6 was used, with ~r/A = 0.55, 0.6, 0.65, 0.7, 0.75 and 0.8. The larger 

~r/A the closer b0 comes to convergence. 
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form of DAF is that for which the b,(x) is independent of the point x (the origin 
of the basis {~;, (xk -- x)}). The figure shows the onset of this behavior as the value 
of cr/A is increased (see especially the blow-ups in panels c and d). Note that the 
constant value limit of bl (and for any odd n-index) is zero. 

In Fig. 2 the behavior of the b-coefficients as a function of ~r/A is shown for a 
set of bn with fixed M. As cr/A approaches a certain (M dependent) value from 
below, the b, become essentially constant, with the odd coefficients vanishing (due 
to the symmetry of the weight function) and the even coefficients are given by 

1 ( _ q q  
b , , -  ~ \ 4,} n! " (22) 

The onset of this limiting behavior occurs when it is a valid approximation to 
replace the sum by an integral in eq. (6). As noted above, in the Euler-MacLaurin 
approximation the overlap matrix and its inverse are diagonal as a consequence of 
the orthogonality of the Hermite polynomials on integration under the Gaussian 
weight. The applicability of this approximation is determined by M, a measure of 
the highest degree of the polynomials, and ~r/A, the ratio of the width of the 
Gaussian to the grid spacing. The conditions under which the approximation is 
valid have been explored previously and will not be repeated here [10]. Suffice it to 
say that this approximation holds under such general conditions that it is extremely 
useful for numerical applications. 

Moreover, the validity of this approximation is not limited to Hermite DAFs 
but, in our experience, holds quite generally (under appropriate conditions such as 
the scale of the DAF relative to the grid size) for any underlying basis set. We call 

1 

0.75 

0.5 

0.25 

Gb~9 0 

~.2~ 

~. !  

~.71 

0.7 0.8 

Gb 0 

Gb 2 

0.9 ' i ' 1.1 

Fig. 2. Onset of  constancy in the b, (in units of  or) as a function of  ~r/A. Shown are b0-9 at r 1 = 0.625 
and M = 10 for the Hermite  Polynomial  D A F s  for a range of  cr/A. All of  the coefficients become 
essentially constant  at cr/A = 0.85 (vertical line) with the odd coefficients going to zero and the even 

ones to values given by eq. (22). 
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such DAFs "well-tempered". Well-tempered DAFs have the interesting feature 
that the approximation they generate is of the same order of accuracy on and off 
the grid points. In an appropriate limit (see below), DAFs based on various systems 
of orthogonal polynomials are qualitatively similar. This is illustrated in Fig. 3 for 
DAFs based on the Hermite, Legendre, and one particular Jacobi polynomial. In 
particular, all such DAFs are sharply peaked at the origin, with decaying oscilla- 
tions (in the coordinate representation). The weight function for the Hermite DAF 
and all its derivatives are everywhere continuous on the infinite interval 
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Fig. 3. Comparison of distributed approximating functionals based on various sets of orthogonal 
polynomials in both coordinate and momentum space. Figs. 3(a), (c) and (e) show the coordinate 
space representation of DAFs based on sets of Hermite Polynomials, An,  Legendre Polynomials, AL, 
and Jacobi polynomials, A]. For  the Hermite polynomial D A F  (Figs. 3(a) and (c)) tz = 0.3, while for 
the Legendre polynomial D A F  and the Jacobi polynomial D A F  ~r = 1. The Jacobi polynomials used 
are the J(x, 3, 3), meaning the weight function is w(x) = (1 - x)3(1 + x) 3. In all three cases the odd 
polynomials vanish, and even polynomials to degree 14 (i.e., M = 28) were used in calculating the 
DAF.  For  both the Legendre and Jacobi polynomial systems the D A F  has compact support on the 
interval [ -1 ,  1], and in addition the Jacobi polynomial D A F  (and its first two derivatives) vanish on 

the boundary. 
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( - o e  < x < o~). However, only the Jacobi DAF weight function and its first two 
derivatives are everywhere continuous on the infinite interval. In the Legendre case, 
even the Legendre weight function is not everywhere continuous on the infinite 
interval. This accounts for the differences in the structures of these DAFs in the 
momentum representation, and for the particular utility of the Hermite DAF. 

4. The  "wel l - tempered"  approximat ion  

For a set of orthogonal basis functions, normalized under a weight w, the stan- 
dard basis set expansion can be written as 

M 

g(x) = Z / dx' w(x~)~,(x~)g(x~)~n(x). (23) 
n=0 

The residual, or error, for this formula is a vector that lies in the subspace spanned 
by the ~, for n = M + 1 to ~ .  That is, it lies in the space complementary t0 the sub- 
space spanned by the basis functions ~,, n = 0 to M. For example, i fg  is a polyno- 
mial of degree M + 1 then the residual is proportional to ~M+l (x); if g is a 
polynomial of order M + 2 then the residual is a linear combination of~M+l (x) and 
~M+z(X), etc. Typically, such expressions yield an approximation which tends to 
oscillate about the exact function. 

Comparing the above to the continuous DAF representation (using the same 
orthogonal polynomials) we find that when Cj~ 1 ~ 6j, holds, eq. (9) reduces to 

M 

IM(X,X I) = Z W ( X  ~ - x ) ~ j ( O ) ~ f ( x  l - X), (24) 
j=0  

where the subscript M indicates the highest degree polynomial in the basis set. 
Straightforward calculation demonstrates that the continuous DAF approxima- 
tion 

f dx'IM(X, ~)g(x ~) (25) 

is exact for a polynomial of degree M. If the construction is done with the origin 
placed on a zero of ~M+I, then from eq. (23) 

IM(x, x!) = IM+I (x, x ~) (26) 

and eq. (25) is exact for a polynomial of degree M + 1. In general, i fg is a polyno- 
mial of degree N/> M + 2 it can be written in the form 

N N 

g(x~) = Z dN-k(X)~k(XJ -- X) = ~_, dj(x)~N_y(x-- x~), (27) 
k=0 j=0 
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where dj(x) is a polynomial of degreej. It then follows that 

N-M-2 
g(x) = g(X) + Z 4"(X)~N-j(O)" (28) 

j=0 

Thus, i fg  is a polynomial of order M + 2, the residual is constant; i fg  is a polyno- 
mial of  order M + 3 the residual is linear, etc. Note  further that the residual is not 
constrained to lie in the complementary subspace (which in this case consists of  
polynomials of degree N >/M + 2). The low polynomic degree of  the residual allows 
the D A F  approximation to follow the original function with fewer oscillations 
about the exact value than is generally the case for a basis set expansion. In fact, 
qualitatively the residual of a function often tends to look roughly like the function 
itself, although depending on the level of accuracy characterizing the DAF-class of  
functions, it is orders of magnitude smaller. This behavior is illustrated for some 
example functions in Fig. 4. 

Eq. (28) is valid also if the polynomials are orthogonal under summation; but 
in the general case the quantities ~U-j(O) are also parametrically functions o f x  and 
so it is difficult to draw rigorous conclusions about the x-dependence of the resi- 
dual. However, in the well-tempered approximation, the basis set is nearly indepen- 
dent of  any parametric dependence on x and the analysis of  the residual carries 
through as for the continuous D A F  case. 

The well-tempered nature of the D A F  representation of a function can be sum- 
marized then, as follows: for a projection operator P o fa  P-invariant subspace and 
its orthogonal complement,  Q -- 1 - P, we have that p2 = p and PQ = 0. The AIK 
for an ordinary basis set expansion is such a projection operator. In contrast, i f I  is 
a general AIK for the P-invariant subspace, then we have that IP  = P but IQ is 
unspecified. As a result the residual of a function g, defined to be ( 1 -  I)g 
= (Q - IQ)g, is not constrained to lie in the Q-invariant subspace. For the example 
just described, i fg  is a polynomial of degree N, the residual will be a polynomial of 
degree N - M - 2. 

We next consider the well-tempered property of  DAFs in the frequency (or 
Fourier transform) space. It has been established earlier that for the D A F  of  
section 3 (i.e., uniform grid, single set of basis functions) I (x ,  x ~) = I ( x  - g ) ,  and 
such transformations are always diagonal in Fourier space. Thus, in the continuous 
D A F  case 

]'(k) = Z ( k ) f ( k ) ,  (29) 

where f (k )  is the Fourier transform of the exact function g(x),  ] ' (k)  is the Fourier 
t ransform of~(x), the D A F  approximation to g(x) 

/ ax' I (x  - x')g(x'),  (30) 

and Z(k )  is the Fourier transform of the continuous D A F  kernel, I ( x  - g ) .  Now, 
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Fig. 4. Demonstration that the "residual" of a DAF fit to a function resembles the function itself 
for three separate cases. Shown are the original function (solid line) and the residual 
R(x )= f ( x ) - f c ( x )  (dashed line) for ( a ) f l ( x ) = s i n ( x ) ,  ( b ) f 2 ( x ) = e  -(x-2)2/4 and (c) 
j~(x) = (0.2x 3 - x 2 + 1) cos(2x)e -(x-2)2/4. A discrete DAF transformation was carried out on each 
function using Hermite polynomial DAFs with M = 8, cr/A = 1.4043 (this puts the DAF in the "well- 
tempered" regime) and a grid spacing o fA = 0.25. For purposes of comparison, the residual has been 
scaled to have roughly the same range as the original function, with the scale factors used being (a) 
3 x 10 7, (b) 5 × 10 7 and (c) 2 x 105. Fig. 4(a) demonstrates that for a sinusoidal function the residual 
is formally proportional to the original function [eq. (36)]. Similarly, in Fig. 4(b) the vertical lines pass 
through the inflection points of the Gaussian, demonstrating that the residual is indeed nearly zero 

near an inflection point, as per eq. (35). 

i f  t he  w e i g h t  f u n c t i o n  is s y m m e t r i c ,  the  ke rne l  ha s  as its n a t u r a l  v a r i a b l e  (x  - x ' )  2, 

a n d  its F o u r i e r  t r a n s f o r m  will c o r r e s p o n d i n g l y  be  a f u n c t i o n  o f  ~ .  W e  t h e r e f o r e  

c a n  c a r r y  o u t  a T a y l o r  e x p a n s i o n  o f  Z ( k )  a b o u t  s o m e  p a r t i c u l a r  k02, viz . ,  
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F ?(k) = [D(~)  + (k 2 - k~o)D'(~ ) + 
i_ 

where O(k 2) - Z(k). iY(k 2) is given by 

= ( d %  
k 2 \e  

(k2 -2! k2)2 D" (/~°) + . . . I f (k )  , (31) 

(32) 

etc. If we carry out the inverse Fourier transform and note, e.g., that 

d2g 1 f dx a - ffTr dk eikXD(k2)k2f(k) , (33) 

we conclude that 

[ d e] 
~(x) = D(k~o)g(x ) - D'(~) ~g(x)  +~x2] + . . . .  (34) 

We are free to choose ~ so as to make the second term small, in which case the resi- 
dual R is given by 

R ~ [1 - O(k~o)lg(x ) (35) 

and the error is roughly proportional to the function being approximated. This 
analysis also suggests that the residual approaches a minimum near an inflection 
point (see Fig. 4). Of special interest is the case where g(x) is sinusoidal. Then, since 
all even derivatives ofg(x) are proportional to g(x), the Taylor series ofeq. (31) can 
be formally summed to obtain 

R = constant x g(x) (36) 

so that the residual is rigorously proportional to the function being fitted. Thus, if 
g(x) is a polynomial then the residual is a polynomial of lower degree. If the func- 
tion is sinusoidal the residual is strictly proportional to the function. In either situa- 
tion, the DAF approximation, ~(x), tends to have a much less serpentine behavior 
than the corresponding basis set expansion and the residual roughly resembles the 
function. This leads to accurate representations of derivatives (see Fig. 5 and 
discussion below) as well as the original function on and off the grid, as we later 
discuss. 

5. More  general D A F s  

There are several ways the results of the previous sections can be generalized. 
One important case is when the grid spacing is unequal. In this situation, if one 
wishes the variational expression in eq. (3) to be a quadrature approximation to the 
integral, it is necessary to include an appropriate volume element in the weight 
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Fig. 5. Generation of derivatives via the DAF transformation: Same as for Fig. 4, but now the DAF 
representation is used to generate Yi = f/(X) for the three functions of Fig. 4 via use of eq. (49) in the 
well-tempered limit. Shown are the exact derivative (solid line) and the residual of the derivative 
Rai (x) = yi(x) -~t (x)  (dashed line). Again the residual has been scaled to have roughly the same range 
as the original function, with the scale factors being (a) 106 (b) 106 and (c) 2 x 104. All other param- 

eters are as in Fig. 4. 

func t ion ,  thus  ensur ing  tha t  the D A F  has  a well-defined l imit ing va lue  no  m a t t e r  
h o w  the  l imit  is taken.  F o r  example ,  i f  there  exists a m o n o t o n i c  func t ion  ( (x )  wi th  
the  p r o p e r t y  tha t  ¢(xj)  = j ,  t hen  the ( - space  gr id  is un i form.  In o rde r  fo r  the su m  o f  
eq. (3) to  p r ov ide  a q u a d r a t u r e  a p p r o x i m a t i o n  the s u m m a n d  m u s t  co n t a in  the 
J a c o b i a n  lOx/O l as a fac tor .  T h a t  is, the  ap p ro p r i a t e  weight  in the s u m m a t i o n  is 
w(x j  - x ) lOx /O( l j ,  where  w is the desi red weight  func t ion  in the  c o n t i n u u m  limit.  

Al te rna t ive ly ,  eq. (1) can  be wr i t t en  in the f o r m  
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gaPe (x) = Z I (x ,  xk) g . (37) 
- o o  Xk 

As a trivial example, in the case of an equal spaced grid ff = x / A  where A is the grid 
spacing the appropriate weight is thus w(xj - x) A.  However, in this special case the 
Jacobian is constant and its inclusion does not affect the minimization of A({aj}; x) 
in eq. (3). 

The expression for the DAF transform of eq. (11) is somewhat simplified if the 
initial basis set is orthogonal under summation; i.e., if the C matrix defined by 
eq. (6) is diagonal. This circumstance makes the inversion of the C matrix trivial. In 
the most general case this requires a different set of orthogonal functions at each x- 
point; however, the situation is somewhat simpler if the grid is equal spaced, for 
then one needs only a different set of functions for each r/-point (i.e., each x-point 
modulo the grid). 

If the expansion functions are orthogonal polynomials, they can be generated 
efficiently using the well known fact that orthogonal polynomials obey a three-term 
recursion relation [11]. To implement the construction we first define the inner 
product 

Aj.n(x ) = Z W ( X k  -- x)Pj(xk -- x ;x ) (xk  -- x)ipn(xk - x ; x ) ,  (38) 
k 

where Py(xk -- x; x) is a polynomial of degree j in Xk -- x with coefficients that 
depend parametrically on x. The condition of orthonormality is 

AOn=~jn  . (39) 

To establish the three-term recursion relation, we first note that 

n+l  

yP, , (y;x)  = Z A) , , (x)Pj(y;x) ,  (40) 
j=0  

which follows directly from eq. (38). The orthogonality of the polynomials also 
establishes that A)n is non-zero only if j  is n + 1, or n - 1, which leads to the recur- 
sion relation 

1 yP, ,(y;x)  = Al,,+l,,,(x)P,,+l(y;x) + Al,,,,(x)P,,(y;x) + An_l, , ,(x)P,,_l(y;x ) . (41) 

If P,(y; x) and P,-I  0'; x) are known, then A~n(x ) and A l l , , , ( x )  can be calculated 
directly from eq. (38). To determine Aln+X,n(X) we calculate the inner product of each 
side ofeq. (40) with itself to obtain 

1 2 [A.+, , . (x) ]  [Al..(x)] 2 1 = - -[A,_l, ,(x)]  (42) 

from which a An+l,,(x ) can be obtained to within an arbitrary sign. To begin the 
recursion we have 
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and 

e-1 (Y; x) = 0 (43) 

P00' ;  x) = w ( x k  - x )  , (44)  

which completes the algorithm for the polynomial construction. 
As we have stressed, it is not required that every x-point in eq. (2) have the same 

set of basis functions. To illustrate this, we examine two other ways to construct 
DAFs.  The first is to allow the basis set members in eq. (2), or the weight function 
(or both) to vary continuously as a function ofx. A convenient way to express this is 
to write in place ofeq. (2) the new expression for gxOd), 

gx(X~) = E Ix(x~' xk)g(xk), (45) 
k 

where Ix(x', Xk) is the D AF AIK with parameters fixed at the point x. We then 
define a new D A F  approximation ~(x) by 

~(x) - gx(X) = E Ix(X, Xk)g(xk). (46) 
k 

If  Ix()d, xk) in eq. (10) is derived from a basis set expansion, then eq. (45) can also 
be so derived. However, the particular form of eq. (45) is convenient for approxi- 
mating derivatives and other linear transformations ofg(x) as is discussed below. 

Finally, we note that if the weight function and basis set vary in just such a way 
that 

w(x" - x; x) = ~(x ' )  (47) 

and 

- x;  x )  = ( 4 8 )  

where ~, and ( a r e  functions independent of x, then eq. (7) reduces to a simple basis 
set expansion for all x. F rom this observation it immediately follows that ordinary 
basis set expansions can be viewed as a special case of DAFs. 

6. The  D A F  representa t ion  o f  derivatives 

Although methods for generating a function everywhere in terms of known 
values on a discrete grid are of general interest, many applications also require the 
method  to yield accurate linear transformations of functions. The most  important  
of such transformations are derivatives, and their occurrence in the mathematical  
description of interesting phenomena is ubiquitous. In fact, we have already found 
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DAFs to be a powerful computational tool for a variety of problems, particularly 
in the area of quantum dynamics (i.e., solving the Schr6dinger equation for systems 
involving several degrees of freedom). Such problems require accurate representa- 
tion of the second partial derivatives of the wavefunction (the action of the quan- 
tum mechanical kinetic energy operator) [8,22,24] and of the time-evolution 
propagator, which involves the exponential of the kinetic energy operator [1,2]. 
Other transformations include integral transforms, such as the Fourier integral. 
The DAF representation of a function has especially attractive features for dealing 
with linear transformations of functions, and we discuss these properties in this sec- 
tion. 

There are several different ways that we can approximate the derivative of a 
function, g(x), from its DAF representation. One is to differentiate eq. (8) directly 
to obtain 

dgx(x)--~_,(OI(x, xk))g(xk), (49) 
dx 

(assuming, of course, that I(x, Xk) is differentiable, which in the most general con- 
struction it need not be). In the special case of the continuous DAF where the AIK 
is Toeplitz, eq. (49) becomes 

dgx(X) - J (O l (x-  x')) (50) 

= f I(x-x') dg @) (51) 

where to achieve the final result we have integrated by parts and assumed that the 
"surface term" vanishes. Thus, for this case, the derivative approximation of 
eq. (49) satisfies the relation that the derivative of the DAF approximation to a 
function is equal to the DAF approximation of the derivative. 

A different approximation to the derivative is 

lim Ogx(X~) - ~_, W(Xk -- x) ~ ~(0)"-l"~*'x k --  x ) .  (52)  
~-~x 0x ~ 

k j,n 

The difference between the approximations of eq. (49) and eq. (52) for the deriva- 
tive is that in the first instance all of the x dependence of the DAF is differentiated 
and in the second only part of the x dependence is differentiated. To the extent the 
two forms are approximately equal it must be true that 

lim Ogx(X~) = 0. (53) 
x' ---* x O X 

This will be true ifgx(x') provides a good approximation to g(x') when x' is in the 
neighborhood ofx. Since ~(x') is an approximation to g(x') everywhere on the line, 
and gx(X ~) is only an approximation in a neighborhood of x, we expect eq. (49), in 
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general, to deliver a better quality approximation for the derivative than eq. (52). 
This expectation has been borne out in numerical calculations [23]. Finally, if our 
approximation for g(x) is obtained from eqs. (45) and (46), we can write 

lim OgxOd) -- lim 9_  ~ ix(X~,Xk)g(xk) , (54) 
x~--*x OXt xJ x OXl k 

which we expect to be a good approximation to the derivative since gx(X j) of 
eq. (45) provides a well-tempered approximation to g(x') for every x. The advan- 
tage of this formula is illustrated by the family of well-tempered DAFs based on 
Hermite polynomials, all of which have a very simple closed form expression for 
the first (and higher) derivatives, obtained using eq. (49) [24]. Fig. 5 demonstrates 
the accuracy of the DAF derivative operator (both on and off the grid points) for 
some sample functions. In the well-tempered limit the DAF derivative operator is 
also Toeplitz and can be calculated by fast transform (i.e., an O(N) process). In 
addition, by taking advantage of eq. (54) it is possible to retain the simple closed 
form expression for the derivative while arbitrarily varying the particular choice of 
Hermite DAF for different values ofx. 

The various methods just presented for obtaining approximations to the first 
derivative ofg(x) can be extended easily to higher derivatives. Again, those approx- 
imations based on derivatives of global approximations to the original function are 
the ones we expect to be most accurate. The methods that we have outlined can also 
be used to express approximations for other linear transforms of the original func- 
tion. In general, we can expect the most accurate of these to derive from global 
approximations to g(x). An important example is the action on an L 2 wavepacket 
of the quantum "free propagator", e -iHFt/h where /r-/F = --(1/2)02/0 x2, which 
involves derivatives to all orders and can be expressed analytically in closed form 
for Hermite polynomial DAFs [1,2]. As for integral transforms, the well-tempered 
DAFs associated with translational invariance result in the possibility of "fast 
DAF convolution". Essentially the fast DAF convolution allows one to take advan- 
tage of the "banded" nature of the DAF representation of a function and its deriva- 
tives. The result is a convolution algorithm which requires fewer CPU operations 
(and has lower communication costs) than fast Fourier transforms. These details 
have been discussed elsewhere [7,8,22], and we will not elaborate further on them 
here. 

7. The asymptot ic  nature  of  the D A F  approximat ion  

For the case of the continuous DAF it is possible to demonstrate that the DAF 
representation converges uniformly to the exact function. This is true only for con- 
tinuous DAFs since it is impossible, even in principle, to reconstruct a general func- 
tion exactly only from its values on a discrete grid. The strategy is to construct an 
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approximate identity which is exact for some subspace ]}M of the function space, 
V, of interest. We then consider a sequence of nested subspaces, indexed by M, 
satisfying the condition 

lim VM = V .  (55) 
M--*cx~ 

For any function g E 1; this construction provides a sequence of functions that con- 
verges uniformly to g in the limit as M ~ cx~. 

Recall that a basis set expansion of g provides a best fit in a least squares sense 
for the basis set (i(x' - x). It immediately follows that g(x) is represented exactly if 
it can be written as a finite linear combination of the basis functions ~i. Now sup- 
pose that 

M 

g(x  ~) = Z j3i~i(x~) , (56) 
i=0 

where the set of functions (i are a basis for a representation (not necessarily irredu- 
cible) of the translation group. Then for any x there exists a set of coefficients "Tij(x) 
satisfying 

M 

¢i(xJ) = Z "/ij(x)¢j(x~ - x) , (57) 
j=0 

from which it follows that g(x') can be expressed exactly as a linear combination 
of the ¢i(x' - x). It further follows that the DAF provides an exact identity transfor- 
mation for the functions spanned by the ¢i. By establishing a sequence of such bases 
{~i}M, where in the limit M --* cx~ the set of basis functions is complete on V, our 
objective is obtained. 

To illustrate, let V be the space of analytic functions in 1-D and );M be the sub- 
space o fall polynomials of degree less than or equal to M. Such polynomials form a 
basis for a representation of the translation group and hence a DAF based on these 
polynomials provides an exact identity transformation for all polynomials of 
degree ~< M. Furthermore, as M ~ oo we have VM ~ V and so the DAF approxi- 
mations to any function form a sequence of functions converging uniformly to the 
original function. 

Another basis for a representation of the translation group is the set of functions 
obtained by multiplying all polynomials of degree ~< M be e ikx for fixed k. This basis 
also becomes complete as M ~ c~. More general bases involving more than one 
value ofk  are also possible. 

8. A closed form expression for the D A F  kernel 

For well-tempered DAFs on an equal spaced grid, the bn can be treated as con- 
stants, and we have that 
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M 
I(x'x~) = Z bnw(Vd - X)~n(X' -- X) . (58) 

n=0 

This sum can be pe r fo rmed  in closed form provided the (n belong to a system of  
o r thogona l  polynomials ,  as we will demons t ra te  in two ways. First ,  we define the 
po lynomia lpM (x' - x) by 

M 
pM(x ~ - x) = Z b,~,(x'  - x) .  (59) 

n=0 

I fg(x)  is also a polynomia l  of degree M then 

= f dx~w(x q - x )pg (x  j - x)g()d) (60) g(x) 

is exact. However ,  this equat ion  is also exact for a po lynomia l  of  degree M + 1 if 
the weight funct ion is centered so that  its origin (which, in absolute terms, is at the 
poin t  x) is chosen to be a zero Of(M+l (i.e., (M+I (0) = 0), because in the expression 
for gx(X) that  derives f rom eq. (2) by setting x' = x, ~g+l makes  no contr ibut ion.  

I f  we t akeg(x)  to be of  degree M + 1, then the p roduc tpM(x '  - x)g(x') is a poly- 
nomial  of  degree 2 M  + 1. In this case the integrat ion in eq. (60) can be per formed  
exactly by a Gauss ian  quadra ture  scheme based on the zeros of~M+l. Tha t  is [11], 

M+I 

g(x) = pOPM(O)g(x) + Z pkpM(Xk -- x)g(xk),  (61) 
k¢O 

where the xk - x are the zeros of  ~M+l (with "0"  as the index of  the origin) and Pk 
is the corresponding Gaussian quadra ture  weight. It is seen that  there are M + 1 
values of  the funct ion g(xk) appear ing on the right hand  side of  this equat ion.  These 
can be chosen arbitrari ly since an M + 1 degree polynomial  can always be found  
tha t  passes th rough  any such set of  points.  Since eq. (61) holds exactly for all such 
polynomials ,  we conclude that  

pOPM(O) = 1 (62) 

and  

pM(x~ - x) -- 0 (63) 

for all k ~ 0. We now have M zeros of  the M t h  degree polynomial  PM and we also 
know its value at one other  point;  this is sufficient to determine it uniquely.  Thus,  
we find 

M 1 ~M+I ( Xt -- X) 
pM(x' -- x) = Z b"~n(X~ - x) = (64) 

.=0 p0  +l(0) x ' - x  ' 
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which provides a closed form expression for the DAF in terms of the original poly- 
nomial basis set. 

The second method for calculating a closed form expression for the sum is some- 
what more general in that it does not require one to be in the well-tempered regime. 
Making use ofeq. (41) we can write 

(y - z )Pj (y;r l )Pj (z ;r l )  = Ajl+lj(r/)[Pj+I(y;~)Pj(z;~7) - Pj+l(z;~7)Pj(y;77)] (65) 

+ A)_l?(rl)[Pj-l(y;77)Pj(z;rl  ) - P j - l (Z ; r l )P j ( y ;~ ) ] .  (66) 

Summing both sides of this equation overj  = [0, n] and cancelling terms on the right 
hand side we obtain 

~-'~ P / ( y ; r l )P j ( z ; r l )  = 1 A~,+l , , , ( r l ) [p .+, (y ; r l )p ,~(z; r ] )  _ p ,~+,(z ; r l )P,~(y ; r l ) l ,  
j=o 

(67) 

which is a form of the well known Christoffel-Darboux identity [25]. Substituting 
this result into eq. (58) yields 

n 

I ( x ,  xk)  = w ( x k - -  x)  ~ Pj(O;rl)Pj(Xk - x;rl) (68) 
j=0 

_ w(xk  - x )  Aln+l,n(rl)[p.+l (Xk -- x; r/)P.(0; 7?) - P.+1 (0; rl)Pn(Xk -- x; r/) ] . 
X k - -  X 

(69) 

The polynomials Pj are easily calculated by recursion, as previously discussed. 

9. Summary 

This paper has presented a general formulation of the distributed approximating 
functional technique for numerical analysis. Earlier studies of DAFs focussed, for 
the most part, on well tempered DAFs and in particular on those constructed as 
finite superpositions of Hermite functions (products of Hermite polynomials and 
their generating function). Herein it has been shown (a) that the DAF approxima- 
tion to a function may be obtained from a variational principle and (b) that DAFs 
can be constructed as a finite superposition of  any  convenient set of expansion func- 
tions (and corresponding weight function) and that the case of orthogonal polyno- 
mials can be employed to particular advantage. It was also demonstrated that 
DAFs contain, as a special case, the standard basis set expansion of a function, but 
that in its most general form the DAF representation possesses much greater flex- 
ibility and robustness. 

We discussed the construction of DAF representations of linear transformations 
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of  functions, with particular attention being paid to derivatives. Since ordinary 
and partial differential equations are the foundations of  modern  descriptions of  a 
whole host  of  phenomena (ranging from physical and chemical processes to eco- 
nomics, sociology, etc.), the assurance that D A F s  perform well for derivative trans- 
formations is extremely important.  It was shown that al though D A F s  inherently 
deliver approximations to functions and their linear transforms, in fact, arbi t rary 
accuracy can be attained. Thus, the formalism is, in principle, sufficiently robust  to 
treat  such problems to any level o f  description. 

We also have derived analytical, closed form expressions for D A F s  by two sum- 
mat ion  techniques. These expressions are expected to be quite useful not  only in 
applications, but  especially in formal analyses of  D A F  theory. 

Finally, we have carried out  a more detailed formal analysis of  what  is one of  
the most  intriguing and basic of  the D A F  properties, viz., the well tempered nature 
of  D A F  approximations to functions and their linear transforms. Two distinct 
approaches  (appropriate  to exact D A F  descriptions of  either polynomial  or sinu- 
soidal functions) were given. The remarkable result is that  in contrast  to s tandard 
basis set methods  (which involve projections of  the relevant functions onto ortho- 
gonal subspaces),  the D A F  involves an A I K  and the residual is such that the error 
" fo l lows"  the function being approximated.  This behavior  underlies the proper ty  
that  the D A F s  provide an accurate description of  the function and its derivatives, 
and also reflects the fact that  D A F s  were developed so that  there would be no 
"special points".  
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